
Micro C - Summer 2015 - Resit Exam Solutions

1. Two firms, 1 and 2, are producing a homogenous good and simultaneously decide on
quantity. The price is given by

P = 20− q1 − q2,

and both firms have a marginal cost of 5.

(a) Find the Nash Equilibrium quantities, under the assumption that both firms are
profit-maximizers. What are the profits of the firms in equilibrium?

SOLUTION: Profits for firm i are πi = (15 − qi − qj)qi. Taking the first-order
condition gives 15 − 2qi − qj = 0. By symmetry, the unique Nash equilibrium will
have qi = qj ≡ q∗, where plugging into the first-order condition yields 15 − 3q∗ = 0,
hence q∗ = 5. Firm-1 profits are therefore πi = (15− 2q∗)q∗ = 25.

(b) Continue to assume that Firm 2 wants to maximize profits, but now suppose that
Firm 1 is ‘irrational’ and produces quantity q1 = q′, regardless of what it expects
Firm 2 to produce. Suppose furthermore that Firm 2 does not realize that Firm 1 is
‘irrational’ and instead continues to believe that Firm 1 is a profit-maximizer. What
level of irrationality is optimal for Firm 1 (i.e. what value of q′ leads to the highest
profits for Firm 1)? Describe how Firm 1’s quantity and profits at this optimal level
compare to those from part (a). Briefly explain the intuition for any similarities or
differences (2-3 sentences).

SOLUTION: Since Firm 2 believes that Firm 1 is maximizing profits, Firm 2 will
continue to set the Nash equilibrium quantity q2 = q∗ = 5. Firm-1 profits are there-
fore π1 = (10−q′)q′. The value of q′ that leads to the highest Firm-1 profits is q′ = 5,
which is equal to the Nash equilibrium quantity from part (a), and yields the same
profits. The reason for this similarity is that q1 = q∗ is already a best-reply to q2 = q∗,
by definition of Nash equilibrium. The fact that Firm 1 is irrational cannot lead to
higher profits, since this irrationality (being unobserved) cannot influence Firm 2’s
strategic decision.

(c) Now assume that Firm 1 is ‘irrational’ as in part (b), and suppose Firm 2 understands
that Firm 1 is irrational. What level of irrationality is optimal for Firm 1 (i.e. what
value of q′ leads to the highest profits for Firm 1)? Describe how Firm 1’s quantity
and profits at this optimal level compare to those from parts (a) and (b). Briefly
explain the intuition for any similarities or differences (3-4 sentences).

SOLUTION: Firm 2 now realizes that Firm 1 will produce q′, so its optimal quan-
tity is given by the best-reply function q2 = (15 − q′)/2. To find the value of q′ that
maximizes Firm-1 profits, plug q2 = (15 − q′)/2 into π1 = (15 − q′ − q2)q′ to obtain
π1 = (15 − q′)q′/2, which is maximized at q′ = 15/2, yielding π1 = 225/8. These
values for Firm-1 output and profits are both higher than those in parts (a) and (b).
By committing to produce q′ = 15/2, Firm 1 is effectively acting as a Stackelberg
leader, pushing Firm 2 to reduce its quantity and thereby driving up its own profits.

2. Now consider the infinitely-repeated game G(∞), with stage game G given by:



Player 1

Player 2
M F

M 4, 4 −1, 6
F 5,−1 0, 0

Suppose that both Player 1 and Player 2 have discount factor δ. Let (π1, π2) denote the
average payoff of Player 1 and Player 2 respectively in a particular Subgame Perfect Nash
Equilibrium (SPNE). Recall that in particular, player i’s average payoff will be πi in a
situation where he obtains a payoff of πi in every period.

(a) Show for which values of δ ∈ [0, 1), if any, a SPNE exists where (π1, π2) = (4, 4).

SOLUTION: Suppose both players use the following trigger strategies: “Play M in
period 1. In any period t ≥ 2, play M as long as the outcome in all previous periods
was (M,M), and otherwise play F”. Both players earn an average payoff of 4 if they
both stick to these strategies. Player 1 has no incentive to deviate from his strategy
as long as 4/(1 − δ) ≥ 5, or δ ≥ 1/5. Player 2 has no incentive to deviate from his
strategy as long as 4/(1 − δ) ≥ 6, or δ ≥ 1/3. Hence, these strategies constitute a
SPNE if and only if δ ∈ [1/3, 1).

(b) Show for which values of δ ∈ [0, 1), if any, a SPNE exists where (π1, π2) = (0, 0).

SOLUTION: Suppose both players use the following strategies: “Play F in every
period t ≥ 1, no matter what was played in previous periods”. Both players earn an
average payoff of zero if they stick to these strategies. No player has an incentive to
deviate because (F, F ) is a Nash Equilibrium of the stage game. Hence, these strate-
gies constitute a SPNE for all δ ∈ [0, 1).

(c) Show for which values of δ ∈ [0, 1), if any, a SPNE exists where π1 = −1.

SOLUTION: For Player 1 to earn an average payoff of −1, the players must play
(M,F ) in every period. But Player 1 can guarantee himself a payoff of at least zero
by deviating to the strategy “Always play F , no matter what”. Hence, there is no
value of δ ∈ [0, 1) for which a SPNE exists where Player 1 earns an average payoff of
-1.

(d) Describe the set of all possible average payoffs (π1, π2) that can be obtained in some
SPNE, in the limit as δ approaches 1.

SOLUTION: In this limit, the set of all possible average payoffs (π1, π2) that can
be obtained in a SPNE is given by the set of feasible payoffs from the stage game, i.e.
the convex hull of (4, 4), (5,−1), (−1, 6), and (0, 0), subject to the constraints π1 ≥ 0
and π2 ≥ 0.

3. Consider a signaling game G′ where Nature draws the Sender’s type t ∈ {t1, t2}, the
Sender then sends a messages m ∈ {m1,m2}, and the Receiver responds with an action
a ∈ {a1, a2}. Suppose that from an ex ante perspective, each Sender type is equally likely.

(a) Briefly explain whether G′ is a game of complete or of incomplete information (1
sentence)



SOLUTION: By definition, G′ is a game of incomplete information, where the Re-
ceiver does not observe the Sender’s type.

(b) Describe informally the meaning of Signaling Requirements 5 and 6 when applied to
G′ (3-4 sentences).

SOLUTION: Signaling Requirements 5 and 6 both place restrictions on the out-of-
equilibrium beliefs that should be considered ‘reasonable’ in a Perfect Bayesian Equilib-
rium. Signaling Requirement 5 says that if the Receiver observes a particular message
off the equilibrium path, the Receiver should not believe that the Sender is a type for
whom this message is strictly dominated. Signaling Requirement 6 says that following
such a deviation, the Receiver should not believe the Sender is a type for whom this
message is equilibrium dominated.

(c) Please answer either part (c) or part (d) in question 3, but not both. Sup-
pose that a Perfect Bayesian Equilibrium exists in G′ where t1 sends message m1 and
t2 sends message m2, both with probability 1. Without any further information, is it
possible to say whether this equilibrium satisfies Signaling Requirement 5? Why or
why not? (2-3 sentences)

SOLUTION: All messages are played with strictly positive probability in this sepa-
rating equilibrium. This means that there are no possible messages off the equilibrium
path, so out-of-equilibrium beliefs are not relevant. Since Signaling Requirement 5
only places possible restrictions on out-of-equilibrium beliefs, it must be satisfied in
such an equilibrium.

(d) Please answer either part (c) or part (d) in question 3, but not both.
Suppose that a Perfect Bayesian Equilibrium exists in G′ where t1 and t2 both send
message m1 with probability 1. Suppose furthermore that G′ is a cheap-talk game.
Without any further information, is it possible to say whether this equilibrium satis-
fies Signaling Requirement 5? Why or why not? (2-3 sentences)

SOLUTION: In a cheap-talk game, payoffs do not depend directly on the Sender’s
choice of message. It follows that no Sender type can find a message to be strictly
dominated. Hence, any Perfect Bayesian Equilibrium of a cheap-talk game must sat-
isfy Signaling Requirement 5.

(e) Describe a hypothetical real-world situation where Signaling Requirement 6 might
give insight into strategic behavior (3-5 sentences).

SOLUTION: One example is education as a costly signal (Spence). There are multiple
pooling equilibria where high- and low-ability workers choose the same level of educa-
tion, but these equilibria do not survive Signaling Requirement 6; loosely put, a worker
who deviates to a higher level of education should be able to reveal himself as having
high ability. There are also multiple separating equilibria where the low-ability worker
chooses the efficient level of education (say Bachelor degree?). Signaling Requirement
6 suggests that the most likely strategic behavior in this situation corresponds to a
least-cost-separating equilibrium, where the high type takes just enough education (say
Masters’ degree?) to leave the low type indifferent about mimicking.

4. Consider a game of incomplete information with Consumer 1 and Consumer 2, where each



consumer’s type θi is independently drawn from a uniform distribution on [−1/2, 1/2].
Consumers must simultaneously choose whether to buy one unit of a good. For each
consumer i, buying gives a payoff ui = θi + λ − p if consumer j also buys, and a payoff
ui = θi − p if consumer j does not buy, where λ ≥ 0 and p ≥ 0 are constants. Not buying
always gives a payoff of zero.

(a) Show that a Bayesian Nash equilibrium exists where both consumers buy with prob-
ability 1 if and only if p ≤ λ− 1/2.

SOLUTION: Suppose consumer j buys with probability 1. Consumer i will find it
optimal to buy himself if buying gives a positive payoff: θi + λ − p ≥ 0. This con-
dition must be satisfied for all θi ∈ [−1/2, 1/2], which is the case if only if p ≤ λ−1/2.

(b) Consider a symmetric Bayesian Nash equilibrium where each consumer i buys if and
only if his type exceeds a cutoff value: θi ≥ θ∗. Show that θ∗ = (p− λ

2 )/(1− λ), and
write down the resulting expected total demand from the two consumers.

SOLUTION: Suppose that Consumer j buys if and only if θj ≥ θ∗. This means
that from the perspective of Consumer i, Consumer j buys with probability 1

2 − θ
∗,

since type is uniformly distributed on [−1/2, 1/2]. Thus, Consumer i earns an ex-
pected payoff of θi+λ(1

2−θ
∗)−p from buying. Willingness to pay is strictly increasing

in type, so type θi = θ∗ must be indifferent about buying, hence θ∗+λ(1
2−θ

∗)−p = 0,
or equivalently θ∗ = (p − λ

2 )/(1 − λ). Expected total demand is therefore given by
2(1

2 − θ
∗), or equivalently (1− 2p)/(1− λ).

(c) Now interpret p as the price set by a seller. What is the value of p that maximizes
the seller’s expected revenue if λ = 1/2? What about if λ = 2?

SOLUTION: First suppose λ = 1/2. Part (a) then shows that there is an equilibrium
where both consumers buy with probability 1 if and only if p = 0, but clearly p = 0 can-
not maximize expected revenues. Hence, for any positive price that yields strictly posi-
tive expected revenue, part (b) shows that these revenues are given by p(1−2p)/(1−λ),
which is maximized at p = 1/4. It then follows that θ∗ = (p − λ

2 )/(1 − λ) = 0 ∈
[−1/2, 1/2], so each consumer buys with probability 1/2. Now suppose λ = 2. Part
(b) then shows that expected demand is increasing in p. Thus, the price that maxi-
mizes expected revenue can be no lower than the value of p for which expected demand
is equal to 2: that is, (1 − 2p)/(1 − λ) = 2, or equivalently p = 3/2. From part (a),
p = 3/2 is also the highest price for which an equilibrium exists where both consumers
buy with probability 1. Hence, p = 3/2 maximizes expected revenues when λ = 2.

(d) What do your answers in parts (a-c) suggest about the relationship between price
and expected demand in the presence of network externalities? (3-4 sentences).

SOLUTION: Answers might include the following points. The presence of moder-
ate network externalities (say λ = 1/2) tends to make demand more sensitive to
price, as evidenced by the expression (1− λ) in the denominator of expected demand
in part (b). A price increase then reduces consumer willingness to pay, because each
consumer expects the other to become less likely to buy. Moreover, when network
externalities are strong (say λ = 2), there can be multiple values of expected demand
consistent with a single price. Some of these ‘equilibria of the consumer game’ can
have unusual properties, for example where demand is increasing in price.
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